

State-Driven Programming

Georgiy Korneev Anatoly Shalyto

Saint Petersburg State University of Information Technologies, Mechanics and Optics Computer Technology Department

- Automata in hardware engineering
 - Applied since 50th
 - A lot of theories and formal methods
- Automata in software engineering
 - Compilers
 - Protocol specifications
 - Statecharts
 - State-driven programming

- State-driven programming
- Object-oriented state-driven programming
- Code-based automata construction
- Automata models verification
- Development tools
- Genetic algorithms

State-Driven Programming Fundamentals

State

- Control state
- Computational state
- Transition
- Input actions
 - Events
 - Input variables
- Output actions

State-Driven Programming Benefits

- Unified approach to complex behavior systems engineering
- Logical errors detection on early stages
- Design, implementation debugging and documentation in common terms
- Scalability
- Automated code generation

State-Driven Programming Application Areas

- Programmable logic controllers
- Embedded systems
- PC-based control systems
- Web-applications

- Object-oriented automata wrapping
 - Automated code generation
- Object-based automata decomposition
 - State-like design patterns
- Automata inheritance
 - Semantics
 - Notation

OO State-Driven Programming OO Automata decomposition

- State-like design patterns analysis
- State Machine design pattern
- State Machine programming language
 - Expanding Java with state-driven programming concepts
 - Text-based state-driven language

OO State-Driven Programming Automata Inheritance

Semantics

- Formal automata models
- Liskov substitution principle for automata
- Automata inheritance requirements
- Notation
 - Compact graphical automata inheritance notation

- Code-based automata model construction
- State-driven algorithm animators

Code-based automata construction Automata model construction

Models for explicit recursive procedures

- Single automata
- Stack-based approach
- Models for recursive programs
 - Interactive automata systems
 - Automata instantiation approach

Code-based automata construction Algorithm Animators

• Bidirectional algorithms tracing

- Recursion support
- Control and calculation state preserving
- Reverse execution supported in automata models
 - Low memory and time requirements
 - Stack-based architecture
- State-driven algorithm animation framework
 - http://neerc.ifmo.ru/vizi
 - <u>http://neerc.ifmo.ru/vizi/examples</u>

- Validation
- Behavior verification
- State-driven testing and debugging

Automata models verification Behavior Verification

- Model checking
 - Kripke models
 - Linear temporal logic
- Implementation
 - Mapping automata model to Promela model
 - Contrary instance search with Spin
 - Backward mapping of contrary instance to automata model

Automata models verification Testing and Debugging

- State-driven testing
 - State covering
 - Transition covering
 - Automated regression testing
- Debugging
 - Automated logging
 - Execution path reconstruction

- Integrated development environment
 - UniMod
- Support libraries
 - STOOL
 - OState
- Text-based state-driven languages
 - State
 - State Machine

- UML-based automata notation
 - Nested states support
 - Diagram editor
- Syntax diagram verification
 - Error highlight
 - Code completion
- One-click diagram execution
- Local and remote state-driven debugging
- Interpreting and executable code generation

- Application areas
 - Client-server application for Java ME, SE and EE
 - Symbian applications (C++)
- Open source
- Homepage <u>http://unimod.sf.net</u>

Development Tools Support Libraries

- STOOL (C++)
 - Automated logging
 - Exception handling
 - Multithreading support
- OState (Java)
 - OR & AND state support
 - Generalized transitions

Genetic Algorithms for Automata Construction

• Automata representation

- Reducing of chromosomes space
- Structured representation
- Mutation and crossover
 - Effective automata mutations
 - Effective automata crossovers

- Since 1998
- Head: Anatoly Shalyto
 - Founder of state-driven programming in Russia
- 3 PhD
- 10 PhD students

State-Driven Programming

• Журналы

- "Программирование"
- "Автоматика и телемеханика"
- "Известия РАН. Теория систем управления"
- "Искусственный интеллект"
- Конференции
 - Телеметика 2000-2004
 - Linux Summit 2003
 - KIMAS 2003 и 2005