
2005 International Conference on “Integration of Knowledge Intensive
Multiagent Systems. KIMAS ’05: Modeling, Exploration, and Engineering”.

USA, MA: IEEE, 2005, pp. 460–465.

Methods of Object-Oriented Reactive Agents
Implementation on the Basis of Finite Automata

Anatoly Shalyto, shalyto@mail.ifmo.ru

Lev Naumov, naumov@rain.ifmo.ru
George Korneev, kgeorgiy@rain.ifmo.ru

St. Petersburg State University of Information Technologies,
Mechanics and Optics

Computer Technologies Department
Sablinskaya street 14, St. Petersburg, Russia

Abstract—This paper gives an overview of different
automata implementation methods in the framework of
object-oriented agent-based systems development. The
general idea of this paper is the application of the finite
automata to the reactive agents’ development [1]. Support
of several mechanisms of automata interactions allows
using discussed methods for multi-agents systems
implementation. So, this paper describes an approach to
solution of one of the paramount problems of object-
oriented programming – definition of connections
between static and dynamic properties of object-oriented
systems.
Described methods are used in projects, which were
developed in the framework of Foundation for Open
Project Documentation [2].

1. INTRODUCTION

In paper [3] authors offered an approach to agents’
implementation as automata for logical control systems.

Moreover authors offered to consider multi-agent systems
as systems of interacting automata.

Before this, in 1991, Anatoly Shalyto offered an approach
to logical control systems development, which was called
“automata-based programming” or “Switch-technology”
[4]. In English it was introduced and published for the
first time in the paper [5].

Switch-technology is based on the concepts of “state”,
“input variables” and “output actions”. Other basic
concepts are compiled combining these terms. So, after
uniting “states” and “input variables” we will get the
concept of “automaton without output”. In the same
manner, after uniting the concept of “automaton without
output” with “output actions” we will get the
“automaton”. Such kind of “automata” in the theory of
automata are called “structural automata”.

For development of systems with complicated behavior
logic should be separated or shared by set of automata.
So, Switch-technology supports several approaches to
automata interactions and intercommunications. List of
these approaches follows:

• interaction between automata by exchange of state
numbers;

• intercommunication between automata, when one is
invoked from (by) another one;

• intercommunication between automata, when one is
nested in another one.

These three approaches are enough for separating logic
between automata when solving tasks of arbitrary
complexity.

When using Switch-technology, automata form the
language of logic specification. So, logic can be described
in the terms of “automata”, “states”, “transitions” and so
on.

Switch-technology allows to build automata’ source code
formally and isomorphically to connection diagrams,
which describe automata’ interfaces, and transition
diagrams, which define automata’ functionality. So this
process can easily be automated.

To distinguish states they are encoded with the help of
single variable. This variable can take some integer value
from the definite set. As a result, states are observable, so
such kind of automata can be used not just for lexical
analysis, but for purposes of control in any tasks.

Written in the framework of Switch-technology, programs
are “living” in the terms of automata.

Important feature of “automata-based programming” is
record-keeping - building logs while program is working.
This mechanism provides “airborne recorder”-like
functionality.

2. FOUNDATION FOR OPEN PROJECT
DOCUMENTATION

In the industry of software development it is always
needed to give a detailed description of the existing code
for the person with average level of qualification. This
description has to cover program development and its
static and dynamic properties. The documentation should
be understandable by everyone, who can be involved in
project.

mailto:shalyto@mail.ifmo.ru
mailto:naumov@rain.ifmo.ru
mailto:kgeorgiy@rain.ifmo.ru

It is always good to have original source code, but the
problem is that in most cases it is not enough.
Understanding of any non-trivial program requires
additional documentation. Code analysis for restoration of
the initial project solutions and program understanding are
two important branches of the technology of
programming. For example, try to understand structure of
the compiler if you have no definition of formal language,
which it compiles.

Everybody, who has participated in large-scale software
reengineering projects, remembers the sense of
helplessness, which occurs when you see the heap of
badly documented (but, may be, very good written) source
code.

Availability of the source codes does not help when there
is no access to key solutions’ developers. If program is
written, for example, in C programming language
(relatively low-level one) and its documentation leaves
much to be desired then all project solutions dissolve in
the coding details. In such situations the value of high-
level documentation like specifications, interfaces
definitions and architecture description may raise the
value of source code!

Lack of source codes for program understanding results in
creation of methods, which unite code developing and
documenting.

One of the most famous attempts of such solutions was
taken by D. Knuth in his book “Literate Programming”.

Probably, the most well-known prohibited book in the
history of computer science was “Commentary on Unix.
With Source Code”, which contains high-level
explanation of source codes of Unix operating system
even with description of used algorithms. This book has
been copied and distributed illegally in xerocopies for
more then twenty years form the moment of publication in
1977!

Switch-technology solves this problem also. Verbal
descriptions, automata definitions (connection diagrams
and transition diagrams), source code, verification logs
and, if necessary, class diagrams and structural diagrams
of classes form “project documentation”, which is good
enough for understanding the functionality of software
with complicated logic, for using and reusing it.

One of the authors (Anatoly Shalyto) declared
“Foundation for Open Project Documentation” [2] on the
opening of North-Eastern European semifinal
competitions of ACM International Collegiate
Programming Contest (Saint-Petersburg, November
2002). For support and propagation of the foundation site
http://is.ifmo.ru was created.

At the Computer Technologies Department of Saint-
Petersburg State University of Information Technologies,
Mechanics and Optics the special pedagogical experiment
began [2]. Students were divided into nearly 60 groups
(one or two persons in each group). Each group was to
develop some project, using automata-oriented
programming technology. Usage of automata allows not
only to specify the problem formally, but also verify
software in terms of automata.

3. AGENTS, OBJECTS, AUTOMATA

Purpose of this paper is in reviewing different methods of
object-oriented automata implementation, which were
developed and used during this pedagogical experiment,
mentioned above. Application of these methods to
reactive agents’ development is a key point. Support of
several mechanisms of automata interactions allows to use
the discussed methods for multi-agents systems
implementation.

Reactive agents are widely used [1] for multi-agent
systems construction. One of the most popular
mathematical models for building agents of this class is a
finite automaton. In paper [3] the special technology for
such agents’ implementation was suggested, but the
procedural approach to programming was used.

In paper [6] this approach was further developed to allow
designing and developing software for reactive systems.
Described method is the procedural one that is why it was
called “state-based procedural programming”.

In paper [7] previous approach was extended to cover
object-oriented programming that is why it was called
“state-based object-oriented programming”. In this
approach automata should be implemented as member-
functions of classes.

During a pedagogical experiment, described in paper [2],
more than sixty projects (for the moment of this paper
preparation) were developed using state based object-
oriented programming.

Design and implementation of these projects caused the
creation of many methods of automata implementation
that significantly differed from the approach suggested in
paper [7].

4. CLASSIFICATION OF METHODS

In the current paper these methods will be classified and
described briefly. Their enumeration and comments
follow.

1. Automata, as classes’ member-functions [7]. This
approach is very similar to procedural programming
style, so it can be called as “the envelopment of
automata into classes”.

2. Automata, as classes without usage of base class that
implements fundamental automata functionality [8].

3. Automata, as classes using base class that implements
fundamental automata functionality. This approach is
based on the combined usage of object-oriented and
automata-oriented programming styles benefits.
Using this method, automata should to be developed
as descendants of a special class that provides
necessary base functionality. This class and,
optionally, necessary additional classes are to be
compiled into a special library that can be used and,
possibly, extended by the developer.

3.1. Paper [9] describes one of the simplest possible
libraries of such kind that provides all necessary
functionality for implementing multi-agent
systems with arbitrary complexity in the
framework of state based object-oriented
programming.

Using this library, designing of each automaton
consists of creation, which is based on verbal

http://is.ifmo.ru

description (declaration of intents), the
connections diagram (description of the
interface) and the transitions diagram
(description of the behavior, dynamic properties).
Source code can be automatically generated
through these documents.

In terms of object-oriented paradigm, automata
are to be implemented as descendants of basic
class Automaton. This class implements basic
and additional functions of automata.

Basic automata functions, implemented in class
Automaton, are:

• providing actions execution at transition
diagram’s vertices (for Moore automata), at
it’s transition (for Mealy automata), and both
for vertices and transitions (for Moore-
Mealy automata, so named, mixed
automata);

• providing automata interactions:

o invokes automaton with specified event;

o implementation of nested automata
(calls from the inner one to the outer
one and vice versa);

o states’ numbers interchange.

Important note is that if the first mechanism of
automata interactions acts only “top-down”,
second and third mechanisms can be carried out
in both directions: “top-down” and “bottom-up”.

Class Automaton implements following
additional automata functions:

• automatic building of logs:

o when automaton starts in some state
with some event;

o when automaton changes its state from
one to another;

o when automaton stops in some state;

• description of input and output actions in logs
manually, with verbal information, specific for
given action or activity.

Descendant classes redefine some of parent’s
member-functions and add functions that
correspond to input actions (events and
variables), internal variables, output actions,
objects to be controlled, nested and invokable
automata.

Paper [9] suggests approach that was illustrated
with the example of an elevator controlling
system that is to be functionally equivalent with
to Knuth’s solution of the same task, described in
“The Art of Computer Programming”. Created
program Lift is published on web-site
http://is.ifmo.ru in “Projects” section.

This program was written in object-oriented
style. It is rather handy to develop such kind of
software on personal computers and they can be
easily ported to the platform of PC-like
controllers. But, as a matter of fact,
microcontrollers are used in controlling systems
extremely wide. Unfortunately compilers from
object-oriented languages do not exist for
microcontrollers (or, at least, for the
overwhelming majority of them). So, procedure-
oriented style of software developing is used for
this kind of computing devices.

In paper [9] a special method of porting state
based object-oriented programs written in C++
to programs, written in C, using the framework
of state-based procedural programming is
suggested.

Obviously, only porting of programs’ skeleton,
fragment of code, excluding visual interface part
and implementation of input and internal
variables and output actions, is meant here.

This method was illustrated with the example of
porting elevator’s controlling systems skeleton to
the platform of microcontroller Siemens SAB
80C515. It was made, using Keil μVision 2 as the
development environment. Resulting program is
also published on the web-site http://is.ifmo.ru in
“Projects” section.

In the paper [10] rather similar approach was
suggested.

3.2. In paper [11] library STOOL (Switch–Technology
Object Oriented Library) was introduced. In this
library, not only automaton, but also all of its
logical constituent parts (states, input actions,
output actions, transitions and others) have their
own base classes.

Another important feature of STOOL is that it
allows using automata for multithreading
software developing.

Automata should be implemented not as
member-functions, but as descendants of a
special base class Auto. This is a more common
method to automata-based programs
development. Mentioned approach (automata as
member functions) can be brought to the second
one (automata as classes), but not vice versa.

Class State represents concept of automaton’s
state. Class Info is used for providing
automaton’s description. It is used for building
logs automatically.

Each automaton can execute no more than a
single transition at startup.

Two variants of algorithms implementation were
examined in that paper:

• automata are implemented inside while-
like loop operators;

• automata are implemented directly, without
the loop operator.

http://is.ifmo.ru
http://is.ifmo.ru

Automata of the first type are extremely useful
for the implementation of various algorithms.
Automata of second type are suitable for reactive
agents’ implementation.

Class’s State overloaded operators,
operator int() and operator=(int)
allow dealing with object, that represents
automatons state, as if it was an integer variable.

Using object instead of integer variable allows
bringing all functions that do not provide main
functionality (transition function, input variables
and output actions) out of switch operator.
Therefore two advantages are achieved:

• it is possible to determine and single out the
“global state” of the whole system;

• it is possible to implement “actions” and
“activities”.

The suggested approach allows keeping the
switch operator even in the object-oriented
implementation. This operator allows
implementing automata’ transition diagrams
integrally, formally and isomorphically.

3.3. In paper [12] one more library for object-oriented
automata implementation was suggested. This
library was called Auto–Lib. Paper also provides
examples of the library’s usage.

3.4. Authors of paper [13] suggest library that allows
“assembling” of simple automata, using
descendants of base classes as bricks. These
classes implement concepts of “automaton’s
state” and “transition between states”.

This library can supply system with isomorphism
between its source code and transition diagram
even if group states (so named, “metastates”)
exists in it.

3.5. In order to dispose reentrance (recurrent calls to
main automaton’s functions before leaving it
after previous call), in paper [14] method of
“delayed automaton’s call” was offered. The idea
is that one member-function of basic class stores
all the events, which were sent to some
automaton, in a special queue and also handles it
in an independent thread (separate for each
automaton). So, when using this method, the
amount of threads equals to the amount of
automata, in contrast to approach, offered in
paper [3], where there is single thread always.

4. Usage of design patterns [14]. Side by side with
usage of libraries for object-oriented automata
implementation, design patterns can be also
developed, used and reused.

4.1. Pattern Automat, described in paper [15], allows
designing and implementing software, using
classes, which implement following concepts:
“state”, “transition”, “condition on transition”,
“action”, and “automaton”. Class, that
implements the last concept, is the base class for
developer’s automata classes. This class contains
the fundamental logic.

4.2. Usage of pattern State. This pattern was
described in book [14]. It implements abstraction
“state”. For concrete state’s implementation
developers have to redefine transition function in
it.

Similar approach was examined in paper [16]. In
this paper, for each automaton it was necessary to
develop base class for the state and then inherit
particular states from that class. Transitions
between states are provided by base classes, but
their execution performs in the descendants.

4.3. As a culmination of design patterns and automata
joint usage, pattern State Machine was developed
[17]. Main advantages and features of this one
are following:

• it allows to develop separate independent
classes (for example, one class that
represents some concrete state could be used
in different automata);

• when using State pattern, transitions’
conditions will be distributed between
classes, which represent “states”. So logic is
not centralized. When using State Machine
these logic will be assembled in “context”;

• pattern State Machine keeps from
duplicating of interfaces.

5. Dynamical automata definition.

5.1. A lot of automata building methods are static –
automata should be described with some source
code before execution. Such description is
constant. Source code is to be interpreted or
compiled and executed somehow. In papers [18,
19] the method of dynamical automata definition
is presented. These methods allows to implement
automata with unknown beforehand amount of
states. So automata’ connection and transitions
diagrams can be changed dynamically at runtime.

All means (classes and basic functionality
engines) for such kind of automata modification
are to be gathered into developer libraries.

5.2. Successful alliance of object-oriented and
automata-based approaches allows to use one
very significant ability. When all automaton’s
functionality is encapsulated in single class,
opportunity to create arbitrary amount of
instances of this automaton, which can control
some device (object, agent), communicating with
self-similar automata, allows to build
complicated multi-agent systems, where agents
(or part of these agents) are identical.

6. Implementation of automata using interpretation.

6.1. In paper [20] method of automated conversion of
transition diagrams into textual description in
XML format was suggested. Special environment
for execution of such descriptions was developed
using Java language (so it is platform-
independent).

6.2. First of all mentioned description should be fully
converted into internal object program

representation at startup. System that consists of
two parts: execution environment and object
representation of program is formed. Each input
and output action needs to be implemented
manually, to provide automaton with necessary
functionality.

When some event occurs, the system analyzes
input variables and executes output actions. After
that it applies to nested automata.

6.3. Papers [21, 22] describe software UniMod
(official web-site http://unimod.sourceforge.net),
that represents plug-in for the Eclipse
environment and implements approach,
described in the previous item. This software
allows to create event-driven object-oriented
programs automatically using state-based
programming. But for designing of finite
automaton Switch-technology is used in tandem
with UML (Unified Modeling Language). So
connections diagrams are represented with the
help of class diagrams and state diagram – with
the help of Statecharts. Discussed software
consists of following parts:

• kernel, that contains object’s metamodel of
finite automaton, implementation of
description parsing, boolean functions
interpretation mechanism, finite automaton
correctness checkup tools and environment
for XML-description execution (this part is
common, not Eclipse-specific);

• built-in module for UML-diagrams
development in the Eclipse environment.
This module helps to create connection
diagrams and transition diagrams as UML-
diagrams. It also performs generation of
XML-descriptions for systems, being
developed by user.

It is possible to conclude this item with formula
UniMod = Switch-technology + UML + Eclipse.

6.4. Authors of paper [23] suggest to use XML for
automata description of virtual device
appearance’s dynamic properties. Virtual device
here is video player Crystal Player (official web-
site http://www.crystalplayer.com).

7. Automata and messages interchange mechanisms.

7.1. While studying classical problem of parallel
programming, the synchronization of the
shooters’ chain [24, 25], it became clear that
automata, built using template, described in
paper [6] (template consists of two operators
switch), does not allow to implement
interacting parallel (or even pseudo parallel)
processes. For overcoming this problem it was
decided to use messages interchange
mechanisms.

For this purpose special library SWMEM (SWitch
Message Exchange Mechanism) was developed.
In automaton’s implementation template
following changes were made:

• automaton’s step was divided into three
parts:

o selection of the transition;

o execution of actions on the transition;

o state variable value’s reassignment;

• special variables for taking conditions’
priorities on diagram’s edges into account
were added;

• special variable for storage of selected action
and its further execution was added.

7.2. In paper [26] mechanism of messages
interchange between automata “located” in
parallel is implemented due to addition such
essence as “common bus”, that allows
implementing decentralized reactive multi-agent
systems.

This approach allows implementing algorithms
of the different kind (of the hierarchical, nested,
parallel or any other) in the same manner.

For implementing automata that are working
simultaneously, it was suggested to change
templates, introduced in papers [6, 24]. The idea
was to build automata with the help of two basic
functions:

• transition/action function, that first of all
executes input actions (of both types, in the
state and on the transition), then defines the
number of a new state and executes output
actions in it;

• update function, that provides execution of
the same operations (refreshing of
automaton state’s number and of array of
received messages).

For synchronization automata should call all
transition/action functions first and then call all
update functions.

8. State-based programming language State. Usage of
automata is limited by the lack of support of
corresponding concepts in programming languages.
For overcoming this problem in paper [27] the
specialized programming language State was
suggested. It is based on language C#, but it is
extended with the support of basic abstraction “state”.

That idea was not a successful one. So subsequently it
was completely refactored (from the ideological point
of view as well). As a result, language State Machine
[28] appears. It extends the Java language by
constructions, which represent concepts of
“automaton”, “state” and “event”. It is based on
design pattern State Machine [17] and realizes its
main idea: this language should be suitable for
describing essences, which vary their behavior in
terms of automata.

5. CONCLUSIONS

In conclusion it is important to note, that current paper
describes a lot of solutions of paramount problem of
object-oriented programming [29] – definition of
connections between static and dynamic properties of

http://unimod.sourceforge.net)
http://www.crystalplayer.com)

object-oriented systems. This circumstance gives an
ability to use different methods to implement reactive
multi-agent systems.

All mentioned approaches are illustrated with the
examples, projects, that were developed in the framework
of “Foundation for Open Project Documentation”
described in [2]. These examples are published on the
web-site http://is.ifmo.ru.

REFERENCES

[1] Luger G., Artificial Intelligence. Structures and
Strategies for Complex Problems Solving, Addison
Wesley, 2002.

[2] Shalyto A., Naumov L., “Foundation for Open
Project Documentation”, Linux Summit, 2004.
http://linuxsummit.org.

[3] Naumov L., Shalyto A., “Automata Theory for Multi-
Agent Systems Implementation”, Proceedings of
Integration of Knowledge Intensive Multi-Agent Systems,
MA, Boston, 2003. http://is.ifmo.ru in “Science” section.

[4] Shalyto A., Switch-Technology. Algorithmization and
Programming of Logic Control, SPb.: Science (Nauka),
1998.

[5] Shalyto A., “Cognitive Properties of Hierarchical
Representation of Complex Logical Structure”,
Proceedings of the 1995 ISIC Workshop. Architectures
for Semiotic Modeling and Situation Analysis in Large
Complex Systems, CA, Monterey, 1995.

[6] Shalyto A., Tukkel N., “Switch-Technology –
Automata Approach to “Reactive” Systems Software
Development”, Programming, 2001, Vol. 5.
http://is.ifmo.ru in “Articles” section.

[7] Shalyto A., Tukkel N. “Tanks and Automata”,
BYTE/Russia, 2003, Vol. 2. http://is.ifmo.ru in “Articles”
section.

[8] Naumov A., Shalyto A., “Elevator Controlling
System”, SPb.: SPbSU ITMO, 2003. http://is.ifmo.ru in
“Projects” section.

[9] Naumov L., Shalyto A., “The Art of Lift
Programming. Object-Oriented Programming with
Explicit States Separation”, Informational and
Controlling Systems, 2004, Vol. 7. http://is.ifmo.ru in
“Projects” section.

[10] Korneev G., Shalyto A., “Finite Automata
Implementation, Using Object-Oriented Programming”,
Proceedings of X All-Russian Scientific-Methodical
Conference “Telematics–2003”, 2003, Vol. 2.
http://tm.ifmo.ru.

[11] Shopyrin D., Shalyto A., “Object-Oriented Approach
to Automata Programming”, SPb.: SPbSU ITMO, 2003.
http://is.ifmo.ru in “Projects” section.

[12] Feldman P., Shalyto A., “Joint Usage of Object-
Oriented and Automata-Oriented Approaches to
Programming”, SPb.: SPbSU ITMO, 2004.
http://is.ifmo.ru in “Projects” section.

[13] Zayakin E., Shalyto A., “Repeated Fragments of the
State Based Source Code Elimination Method”, SPb.:

SPbSU ITMO, 2004. http://is.ifmo.ru in “Projects”
section.

[14] Gamma E., Helm R., Johnson R., Vlissides J. Design
Patterns. Elements of Reusable Object-Oriented Software,
Addison Wesley, 1995.

[15] Astafurov A., Shalyto A. “Automaton Design
Pattern”, SPb.: SPbSU ITMO, 2003. http://is.ifmo.ru in
“Projects” section.

[16] Kuznetsov D., Shalyto A., “Tank Controlling System
for “Robocode” Game. Variant 2”, SPb.: SPbSU ITMO,
2004. http://is.ifmo.ru in “Projects” section.

[17] Shamgunov N., Korneev G., Shalyto A., “State
Machine – New Object-Oriented Design Pattern”,
Informational and Controlling Systems, 2004, Vol. 5.
http://is.ifmo.ru in “Articles” section.

[18] Naumov A., “State Based Object-Oriented
Programming”, SPb.: SPbSU ITMO, 2004.
http://is.ifmo.ru in “Works” section.

[19] Feldman P. “Development of Toolkit for State Based
Programs Debug”, SPb.: SPbSU ITMO, 2004.
http://is.ifmo.ru in “Works” section.

[20] Gurov V., Narvsky A., Shalyto A., “Automation of
Event-Driven Object-Oriented Programming, using State
Based Programming”, Proceedings of X All-Russian
Scientific-Methodical Conference “Telematics–2003”,
2003, Vol. 1. http://tm.ifmo.ru.

[21] Gurov V., Mazin M., Shalyto A., “UniMod –
Software Package for Implementation of Object-Oriented
Applications, Basing on Automata Approach”,
Proceedings of XI All-Russian Scientific-Methodical
Conference “Telematics–2004”, 2004, Vol. 1.
http://tm.ifmo.ru.

[22] Gurov V., Mazin M., Narvsky A., Shalyto A., “UML.
Switch–technology. Eclipse”, Informational and
Controlling Systems, 2004, Vol. 6. http://is.ifmo.ru in
“Articles” section.

[23] Bondarenko K., Shalyto A., “Development of XML-
Format for Video Player Appearance Definition, Using on
Finite Automata”, SPb.: SPbSU ITMO, 2003.
http://is.ifmo.ru in “Projects” section.

[24] Guisov M., Kuznetsov A., Shalyto A., “Integration of
Messages Interchange Mechanism into Switch-
Technology”, SPb.: SPbSU ITMO, 2003. http://is.ifmo.ru
in “Projects” section.

[25] Guisov M., Kuznetsov A., Shalyto A., “D. Mayhill’s
Problem of Shooters Chain Synchronization. Variant 2”,
SPb.: SPbSU ITMO, 2003. http://is.ifmo.ru in “Projects”
section.

[26] Alshevsky U., Raer M., Shalyto A., “Turnstile
Controlling System”, SPb.: SPbSU ITMO, 2002.
http://is.ifmo.ru in “Projects” section.

[27] Shamgunov N., Shalyto A., “State Based
Programming Language with Compilation into Microsoft
CLR”, Microsoft Research Academic Days in Saint-
Petersburg, April 21–23, 2004.

http://is.ifmo.ru
http://linuxsummit.org
http://is.ifmo.ru
http://is.ifmo.ru
http://is.ifmo.ru
http://is.ifmo.ru
http://is.ifmo.ru
http://tm.ifmo.ru
http://is.ifmo.ru
http://is.ifmo.ru
http://is.ifmo.ru
http://is.ifmo.ru
http://is.ifmo.ru
http://is.ifmo.ru
http://is.ifmo.ru
http://is.ifmo.ru
http://tm.ifmo.ru
http://tm.ifmo.ru
http://is.ifmo.ru
http://is.ifmo.ru
http://is.ifmo.ru
http://is.ifmo.ru
http://is.ifmo.ru

[28] Shamgunov N., Korneev G., Shalyto A., “State
Machine – Java Language’s Extension for Efficient
Implementation of Automata”, Informational and
Controlling Systems, 2004, Vol. 7. http://is.ifmo.ru in
“Articles” section.

[29] Graham I., Object-Oriented Methods. Principles and
Practice, Addison-Wesley, 2001.

http://is.ifmo.ru

