
2005 International Conference on “Integration of Knowledge Intensive Multiagent
Systems. KIMAS ’05: Modeling, Exploration, and Engineering”. USA, MA: IEEE,

2005, pp. 449–453.

Automata-Based Programming
of the Reactive Multi-Agent Control Systems

Boris Yartsev, yartsev@rain.ifmo.ru

George Korneev, kgeorgiy@rain.ifmo.ru
Anatoly Shalyto, shalyto@mail.ifmo.ru
Vladimir Kotov, kotov_v@rain.ifmo.ru

St. Petersburg State University of Information Technologies,
Mechanics and Optics

Computer Technologies Department
Sablinskaya street 14, St. Petersburg, Russia

Abstract—Automata-based approach, proposed for the
programming of the virtual autonomous reactive agents
control systems used in the famous “Robocode” game is
extended in this paper to the creation of the control
systems of the reactive multi-agent real-life environment
agents. We demonstrate the efficiency of the proposed
approach by the example of creation of transportation
system, which consists of two interacting robots and is
assembled from the famous “Lego Mindstorms” kit. The
advantage of this approach is the formalization of the
implementation process and the simplification of testing
and modification.

1. INTRODUCTION
Recently a lot of attention has been devoted to the
programming of the multi-agent systems [1-4]. One of the
most important agent types are reactive agents [5-9].

It is appropriate to use finite automata to describe the
behavior of the reactive agents [10-12]. Finite automata
are also used in the description of “psychology of the
behavior” in the book [13] and correspond to the model of
Artificial Intelligence as behavior control system [14].

Despite of the theoretical research in the application of
finite automata to the programming of reactive multi-
agent systems [15] and single projects [6], automata are
not widely used in the development of the software.

The aim of this paper is to describe the automata-based
approach to the development of the reactive multi-agent
systems. The approach is demonstrated on the example of
the creation of a transportation system, which consists of
two interactive robots, implemented with “Lego
Mindstorms” kit.

There are many books about programming for “Lego
Mindstorms” [16, 17]. But they don’t describe the
technology for control programs creation.

Some “Lego Mindstorms” projects are available in the
internet [18-20]. Unfortunately such projects are usually
poorly documented. Also we would like to notice, that in
some papers finite automata [21-23] are used for the
verification of the control systems for “Lego Mindstorms”
robots [24, 25].

2. AUTOMATA-BASED APPROACH
The main ideas of the automata-based approach were
formulated in [26-28]. These papers describe the process
of the development of the virtual autonomous reactive
agent control system, used in the famous “Robocode”
game [29], created by the IBM Corporation.

This approach can be described in following steps.

1. Creation of the agent’s interaction diagram.

2. Development of the agent’s class-diagram.

3. Design of the classes structural diagram.

4. Creation of the automata interaction diagram if the
agent behavior is represented by two or more automata.
Automata can interact in three ways:

• by nesting;
• by invocation;
• by exchanging the identifiers of their states.

5. Creation of four documents for each automaton.
• Verbal description of the automaton behavior.
• Automaton connections diagram. This diagram

defines the interface of the automaton that is the
mapping of symbolic names of the input
variables and output actions used on other
diagrams to the real variables and actions.

• State transition diagram. This diagram formally
describes behaivor of the automata. Variables
and actions are marked by symbolic names
defined on automata connections diagram. The
states are also marked by the symbolic names.
Even for the complicated behavior this diagram
is quite compact.

mailto:yartsev@rain.ifmo.ru
mailto:kgeorgiy@rain.ifmo.ru
mailto:shalyto@mail.ifmo.ru
mailto:kotov_v@rain.ifmo.ru

• Source code of automata. Source code is
generated or developed formally by the state-
transition diagram and is isomorphous to it.

6. Development of the source code for each class
according to its structural scheme.

7. Development of the environment emulator for the
physical agents (robots).

8. Debugging of the control systems in environment
emulator and environment emulator itself.

9. Debugging of the control systems in the real-life
environment.

10. The release of the documentation.

We should notice, that input variables can be defined by
quite complex functions.

For debug purposes each state has its numeric id that is
logged when current state of the automaton is changed. So
the debug on the 8th and 9th steps is preformed in the terms
of the automata states [30].

The automata are implemented using automata variables.
There is a corresponding variable for each automaton.
These variables hold the id of the current state of the
automata.

As it was mentioned before, automata can interact in three
ways: by nesting, by invocation and by exchanging state
ids. In one or several of its states one automaton can call
the other automaton. This is called interaction by nesting.
When one automaton calls the other in its output actions,
it is called interaction by invocation. The third type of
interaction is used in logical conditions—for example, the
transition between two states can occur only if the
automaton variable of the other automaton holds some
specified value (the other automaton is in the specified
state).

3. EXAMPLE

Problem Definition

Develop using the “Lego Mindstorms” kit the
transportation system, which delivers the specified
number of items from one place of the room or table to
another.

The Results

Using the freeware program “MLCAD” [31], drafts of the
robots were designed, and after that, robots were
assembled.

The developed transportation system consists of two
robots: the delivery robot and the vending robot, which
interact via the infrared ports.

Vending robot stands on the vending place. It receives
messages from the delivery robot via infrared port. The

message encodes the number of the objects to give (one,
two or three).

The delivery robot starts at the place of delivery. It
receives the number of the objects to deliver via the
remote control, operated by the user. When it receives a

Figure 1—Scheme of operation

signal, it moves to the vending place and sends a message
with the number of items to the vending robot.

Delivery robot takes the desired number of items and
transports them to the place of delivery. The schematic
plan of operation is shown on the figure 1. The delivery
place is marked with “D” and the vending place is marked
with “V”. The delivery robot is searching for the path
using the rod.

The place of the delivery and vending place are marked
by pieces of the foil. The path between these places is
marked by the black stripe on the white background.
There are no obstacles on the path. The colors of the path
and of the background are assumed to be uniform.

Each robot has a microcontroller. An operating system
and the control program are loaded to the memory of the
microcontroller via the infrared port. The microcontroller
has 32Kb of RAM. In this project “leJOS” [32] operating
system is used, that takes about 17Kb of RAM so the size
of the memory left for the control program is 15Kb.

The control programs are developed in Java programming
language [33] and runs under “leJOS”. Only static
methods are used because of lack of functionality in
“leJOS”. So for each automaton there was a
corresponding static method.

Delivery Robot

The control program of the delivery robot consists of four
automata.

1. The transport robot control automaton is responsible for
message sending and rotation of the robot before moving
back.

2. The path tracing automaton is responsible for moving
along the path.

3. The line search automaton searches the path using the
light sensor on the rod.

4. Rod centering automaton centers the rod.

The first two automata contain eight states. The third and
the fourth automaton contain seven and four states
respectively.

Vending Robot

The control program of the vending robot is implemented
by one automaton named “Vending robot control”. This
automaton contains four states.

Figure 2 — Vending robot automaton connections diagram

4. AUTOMATA DOCUMENTATION EXAMPLE

Verbal Description

The initial state for the automaton “Vending robot
control” is the “Start” state. Then the transition to the state
“Voltage output” occurs, and the voltage of the batteries is
displayed. In the “Voltage output” state, the automaton
stays for the specified time, and than the transition to the
state “Waiting for message” is performed. In this state,
automaton stays unless the message from delivery robot is
received. The number of items to give is extracted from
the message, the engine is launched with the
corresponding power and the transition to the “Item
vending” state is performed. The transition between “Item
vending” state and “Preparation for item vending” state is
performed, when the object is given out. When desired
number of items is given, automaton goes from
“Preparation” to “Waiting for message”.

Connection Diagram

Connection diagram is shown on the figure 2. It contains
short definitions of input variables and output actions.

Symbolic names of the input variables are prefixed by
“x”, of the output actions—by “z” and symbolic names of
the automata variables—by “y”.

In this example automata uses four input variables (x0_0,
x0_1, x0_2 and x0_3) and eight output actions (z0_i for i
from 0 to 7). Here the first index stands for automaton

index and second index stands for id of the object within
automaton.

Automaton variables (not shown on the figure 2), usually
have a form of yi where i is an index of the automaton.

Transition Diagram

State transition diagram is shown on the figure 3.

Each transition has a guard condition that is specified on
it. Guard condition consists of the input variables,
automata variables and logical operators. The transition
occurs, when its guard condition is satisfied. Some
transitions have actions. States have an input (marked
with “in:” prefix) and output (“out:”) actions.

When the transition occurs, the actions are executed.
Actions are executed in the following order:

• output actions of the old state
• actions of the transition
• input actions of the new state

On the loop transition (see state 4 on the figure 3) neither
“in” nor “out” output actions are executed.

5. CONCLUSIONS
The advantage of the proposed approach can be seen
during in the process of the debugging of the control
programs. At first, it started to work correctly very soon,
and all the bugs were fixed fast and easily. There was also
an opportunity to output the index of the active state on

the small LCD display of the microcontroller [12]. It is
possible to output only four symbols on the display; with

different approach debugging with such visualization
could be more complicated.

Figure 3 — Vending robot automaton state-transition graph

We would like to notice, that the debugging process could
be really simplified, if the control programs at first are
debugged in the environment emulator and only after that
loaded in the appropriate agents (robots) and debugged in
real-life environment. Environment emulation is also
designed using state-based approach.

It follows from the example that all the states in the
proposed approach can be of two types—control states
and calculation states. The number of the control states is
small, and the number of calculation states can be
unbounded [34]. Being in the control state, automaton can
pass many calculation states, which allows (as in hybrid
automata [35]) development of the complicated behavior
of each of the agents. This idea was used during the
development of the software for virtual autonomous
reactive agent in project [36].

From review of the documentation for the project [37],
which was developed in the context of “Foundation for
open project documentation” [38], it follows, that the
proposed approach separates the design of the agents from
writing the source code for their control systems [39, 40]
and allows to create high-quality software, which can be
easily modified.

At the end we would like to notice, that in this paper, in
contrast to other works, two types of interactions are
used—between the agents and between the automata in
each of the agents. In both cases the interactions can be
nested.

Project was carried out with the support of the Arcadia
Inc. (Russia, Saint-Petersburg). Authors really appreciate
the help from the Arcadia Inc. CEO Arcady Khotin.

REFERENCES
[1] Luger G., Artificial Intelligence, Structures and
Strategies for Complex Problem Solving, MA: Addison
Wesley, 2002.

[2] Shoham Y., Agent Oriented Programming, Journal of
Artificial Intelligence, Vol.60, № 1, 1993.

[3] Genesereth M.R., Ketchpel S.P. Software agents,
Communications of the ACM, Vol.37, № 7, 1994.

[4] Bradshaw J., Software Agents, MA: AAAI Press,
1997.

[5] Tarasov V.B., From multi-agent systems to
intellectual organizations: philosophy, psychology and
informatics, M.: Editorial URSS, 2002.

[6] Brooks R., Intelligence Without Representation,
Artificial Intelligence, 47, 1991.

[7] Seel N., Intentional Description of Reactive Systems,
Decentralized Artificial Intelligence II, Amsterdam:
Elsevier North-Holland, 1991.

[8] Ferber J., Les systems multi-agents vers une
intelligence collective, Paris: InterEditions. 1995.

[9] Murray D., Developing Reactive Software Agents, AI
Expert, № 3, 1995.

[10] Shalyto A., Cognitive Properties of Hierarchical
Representations of Complex Logical Structure, 10th IEEE
International Symposium on Intelligent Control,
Monterey, California, 1995.

[11] Harel D., Politi M., Modeling reactive systems with
statecharts, NY: McGraw-Hill, 1998.

[12] Shalyto A.A., Logic Control and "Reactive" Systems:
Algorithmization and Programming, Automation and
Remote Control, Vol.62, № 1, 2001.
http://is.ifmo.ru/english/log_control/

[13] Piaget J., Structuralism, NY: Basic Books, 1970.

[14] Miller G., Gallanter E., Pribram K., Plans and the
structure of behavior, NY: Holt, 1960.

[15] Naumov L., Shalito A., Automata Theory for Multi-
Agent Systems Implementation, Proceedings of
International Conference "Integration of Knowledge
Intensive Multi-Agent Systems: Modeling, Exploration
and Engineering", KIMAS-03, Boston: IEEE Boston
Section, 2003.

[16] Baum D., Definitive Guide to Lego Mindstorms, NY:
Appress, 2000.

[17] Baum D., et al. Extreme Mindstroms, An advanced
guide to Lego Mindstorms, NY: Appress, 2000.

[18] Kiwi B., Do it youself, Computerra 2002. №5.

[19] Brown JP., Serious Lego.
http://jpbrown.i8.com/cubesolver.html

[20] Crosby M., Lego projects.
http://www.mastincrosbie.com/mark/lego/lego.html

[21] Alur R., Kannan S., Yannakakis M., Communicating
hierarchical state machines, Proceedings of the 26th
International Colloquium on Automata, Languages, and
Programming, LNCS 1644, 169–178, 1999.
http://www.cis.upenn.edu/~alur/Icalp99chsm.html

[22] Alur R. Timed Automata., Summer School on
Verification of Digital and Hybrid Systems, NATO-ASI,
1998. http://www.cis.upenn.edu/~alur/Nato97.ps.gz

[23] Alur R., Dill D., Automata-theoretic Verification of
Real-Time Systems, Proceedings of the 33rd IEEE
Symposium on Foundations of Computer Science, 177-
186, 1992.

[24] Iversen T., Kristoffersen K., Larsen K., et al. Model-
Checking Real-Time Control Programs. Verifying Lego
Mindstorms Systems Using UPPAAL, 12 Euromicro
Conference on Real-Time Systems, 2000.

[25] Laursen M., Madsen R., Mortensen S. Verifying
Distributed LEGO RCX Programs Using UPPAAL.
http://citeseer.ist.psu.edu/laursen99verifying.html

[26] Shalyto A., Tukkel N., Tanks and automata,
Byte/Russia, № 2, 2003. (article in Russian).
http://is.ifmo.ru/download/tanks_new.pdf

[27] Tukkel N., Shalyto A., Tank control system for
“Robocode” game. Version 1. (project documentation in
Russian), http://is.ifmo.ru/projects/tanks/

[28] Kouznetsov. D., Shalyto A., Tank control system for
“Robocode” game. Version 2.
http://is.ifmo.ru/projects_en/robocode2/

[29] “Robocode” game homepage
http://robocode.alphaworks.ibm.com/home/home.html

[30] Shalyto A.A., SWITCH-technology. Algorithmic and
programming methods in solution of the logic control
problems. St. Petersburg: Nauka (Science), 1998. LC
Control Number: 2001425055

[31] “Lego” CAD program MLCAD
http://www.lm-software.com/mlcad/

[32] “leJOS” operating system project
http://lejos.sourceforge.net/

[33] Java programming language http://java.sun.com/

[34] Shalyto A.A., Tukkel H.I., From Turing
programming to automata-based programming, PC World
(Russia), № 2, 2002.

[35] The Hybrid Systems Project,
http://control.ee.ethz.ch/~hybrid/

[36] Belyaev A.V., Suyasov D.I., Shalyto A.A., Computer
Game “Cosmonaut”, http://is.ifmo.ru/projects_en/cosmo/

[37] Yartsev B.M., Korneev G.A., Shalyto A.A., Software
Development for Lego Mindstorms Using Automata-
Based Approach (Project “Isenguard”),
http://is.ifmo.ru/projects_en/lego/

[38] Shalyto A., New Initiative in Programming.
Foundation for Open Project Documentation,
http://www.linuxsummit.org/archive2004/shalyto_foundat
ion.pdf

[39] Shalyto A.A., Tukkel N.I., SWITCH-Technology:
An Automated Approach to Developing Software for
Reactive Systems, Programming and Computer Software,
Programming and Computer Software, 27(5), 2001.
http://www.kluweronline.com/issn/0361-7688

[40] Auslander D.M., Ridgely J.R., Ringgenberg J.D.,
Object-Oriented Design in a Real-Time World,. NJ:
Prentice Hall, 2002.

http://is.ifmo.ru/english/log_control/
http://jpbrown.i8.com/cubesolver.html
http://www.mastincrosbie.com/mark/lego/lego.html
http://www.cis.upenn.edu/~alur/Icalp99chsm.html
http://www.cis.upenn.edu/~alur/Nato97.ps.gz
http://citeseer.ist.psu.edu/laursen99verifying.html
http://is.ifmo.ru/download/tanks_new.pdf
http://is.ifmo.ru/projects/tanks/
http://is.ifmo.ru/projects_en/robocode2/
http://robocode.alphaworks.ibm.com/home/home.html
http://www.lm-software.com/mlcad/
http://lejos.sourceforge.net/
http://java.sun.com/
http://control.ee.ethz.ch/~hybrid/
http://is.ifmo.ru/projects_en/cosmo/
http://is.ifmo.ru/projects_en/lego/
http://www.linuxsummit.org/archive2004/shalyto_foundat
http://www.kluweronline.com/issn/0361-7688

